Geothermal Surface manifestation mapping in South-Western

Tanzania

Mnzava Lightness J., Mayo, A. W. and Katima J. H.Y.

University of Dar es Salaam -Tanzania College of Engineering and Technology (COET) DAR ES SALAAM

ARGEoC2. 24-25 NOV. 2008 ENTEBBE-UGANDA

CONTENTS

- 1. INTRODUCTION
- 2. GEOTHERMAL SURFACE MANIFESTATATION AND SRING SURFACE TEMP.
- 3. WATER TYPE
- 4. FLUID MINERAL EQUILIBRIA-SUB-SURFACE TEMP
- 5.POTENTIAL USABLE HEAT AND POTENTIAL POWER ESTIMATES
- 6. CONCLUSION AND RECOMMENDATIONS

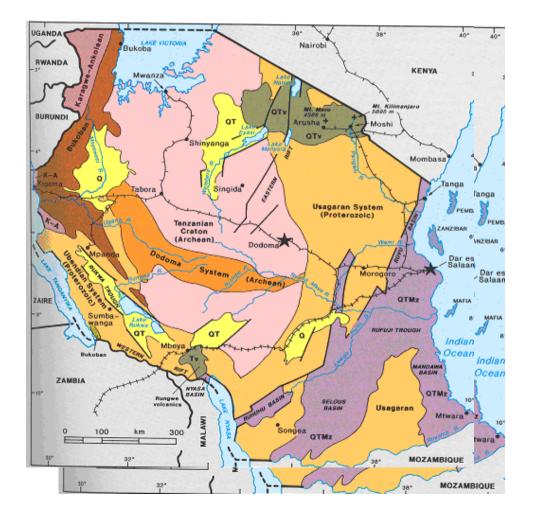
7. WHAT NEXT?.

UNITED REPUBLIC OF TANZANIA

- Location: East Africa lat.
 1°S to 11°45′S and long.
 29° 21′E to 40° 29′E
- **Population:** 34.6 M(2002)
- **Size**: 945,087 Km²
- Percapita energy consumption 0.7 ToE (tonne of oil equivalent)

UNITED REPUBLIC OF TANZANIA

Physical features


-A land of plenty from wildlife, forests products, minerals (gold, tanzanite, emerald and diamonds etc) gas, solar, Wind and geothermal;

- with African's highest mountain (Kilimanjaro) at 5,895m and lowest point (lake Tanganyika) at 358m below sea level

- Spectacular lakes;

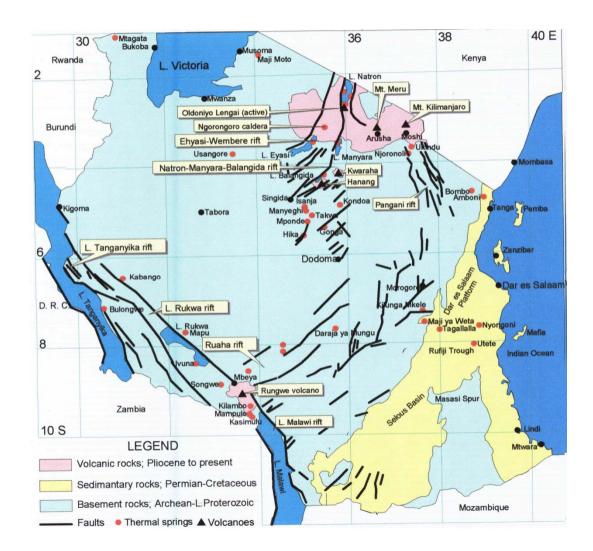
Tanganyika, Nyasa, Natron, Manyara and Eyasi in the East African Rift valley, bounded by fault scarps

General geology

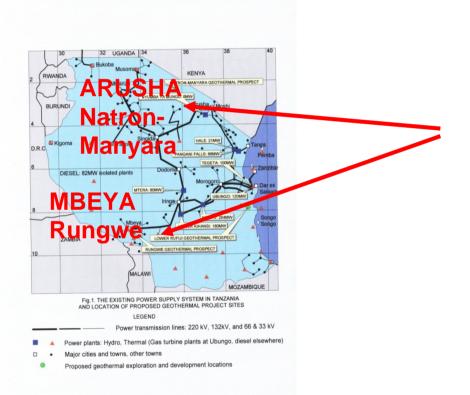
Dominated by a large mineralized Precambrian craton with formations of >2 bil yrs old, rimmed by Proterozoic crystalline rocks.

Younger sediments and volcanoclastics of recent, occupy the rifted graben, coastal plains and inland basins

Electricity


Generating capacity (2006): 1018 MW 72.3% owned and operated by TANESCO Hydro 561 MW Natural gas 182 MW **Diezel IPP** 100 MW Isolated 10 towns (decentralized) 55.5 MW Other IPPs 41.5 MW 13 Imported (Zambia and Uganda) MW Comsumption: 46 kWh/capita per annum 11.5 % of population Access to electricity Rural population access to electricity 2% Geothermal

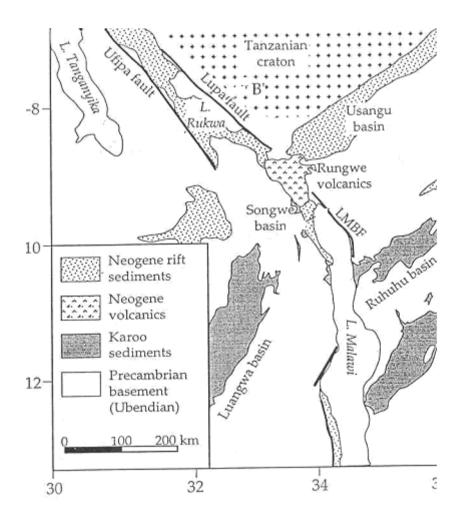
Geothermal sites in Tanzania


the studied area and the selected GEOTHERMAL project region

There are more than 15 locations, with more than 50 hot springs of temp > 40°C;

- Some are found over and near the active rift segments within Quarternary volcanism and in Pre-cambrian craton

Potential locations



LOCATION OF MOST POTENTIAL GEOTHERMAL SITES IN TANZANIA Estimated Potential 560 MWe (1981)

Mapping surface manifestations in South western Tanzania,

 Geothermal mapping of surface manifestations, which includes structural mapping and hydrothermal mapping was carried out in the four geothermal prospects of South-western Tanzania namely Songwe, Mapulo-Kasimulo, Rungwe and Lake Ngozi area.

Fig 1: Simplified geological map showing the triple junction, location of the study area, in the Rift valley

Field work

- Springs in the three different prospects were mapped (Fig.3.1, 3.2 and 3.3)
- different parameters such as temperature, flow rate, altered rock, mud pools, sulphur, artesian springs and structure setting of the springs were observed and recorded.
- Water samples were collected

Field sketch map 1

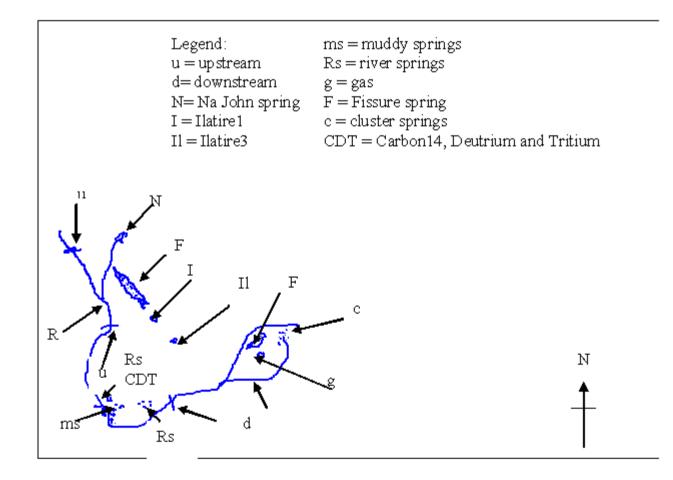


Fig. 3. 1: Sketch map of Songwe valley sampling locations

Field Sketch Map 2

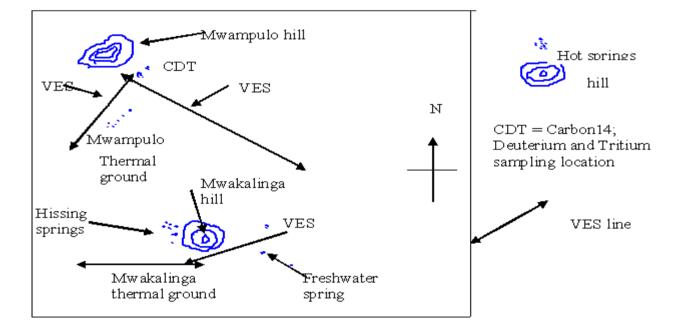


Fig. 3.2: Kyela showing the Mampulo and Mwakalinga thermal grounds

Field SketchMap 3

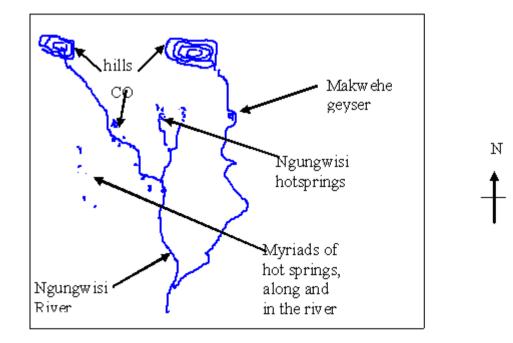


Fig. 3.3: Rungwe hot springs

Surface spring maximum temperatures encutered

- Rungwe 98°C at Makwehe geyser
- Ngugwisi river springs 86°C
- Songwe springs and Malonde 85°C
- Mampulo and Kasimulo 65°C
- Lake Ngozi 65°C

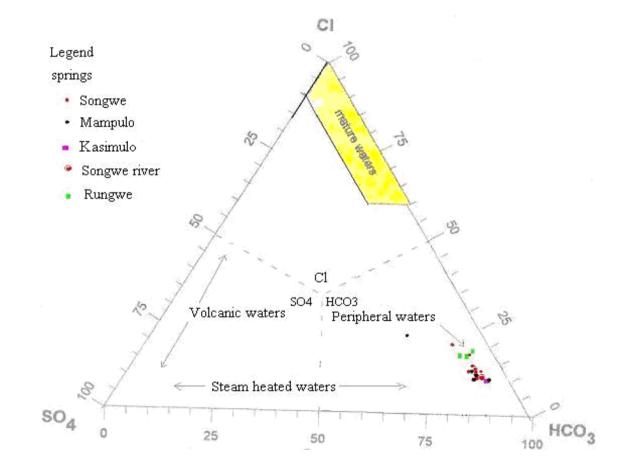
Surface manifestation

Plate 4.1: Songwe-Bwana Hutu hot ground

Vegetation zonation

Plate 4.2: Mampulo hot ground showing vegetation zonation

Fracture spring


Plate 4.3: A fracture controlled spring, steam rising along the fracture from the boiling water within

Intermittent discharge; geysers

Plate 4.4: Makwehe-Rungwe geysers with steam rising at the top left corner of the photograph

Water type

Fig.4.1 Classification of water type by CI-HCO3-SO4 ternary diagram

Fluid mineral equilibria and subsurface temperatures

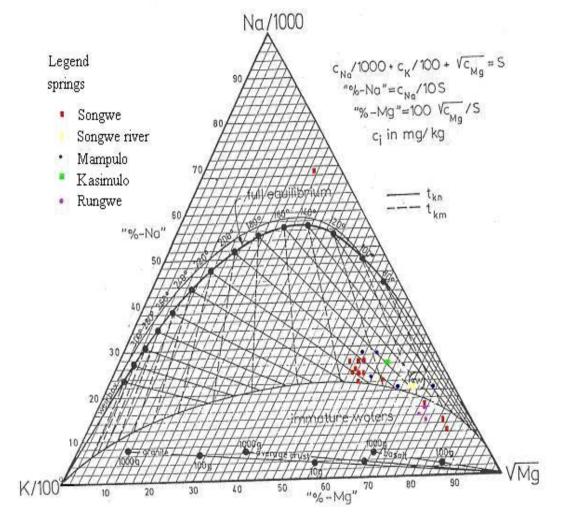


Fig. 2: The (Na+- K+-(Mg+2)1/2) ternary diagram for Dec. 2002

Tkn temperatures from the ternary

- The temperature given by tkn in the diagram were around
- 220°C Rungwe;
- 210°C Songwe;
- 209°C Mampulo and
- 180°C Kasumulo

Heat stored, Potential stored heat and the Power potential of the prospect

- From the literature it was reported that the prospect have a temperature of 270°C (SWECO-VIRKIR, 1978),
- therefore this was used as the maximum temperature in the calculation of a rough estimate of heat stored
- in rocks, fluid, vapor and condensate;
- potential stored heat and
- power potential of the prospect:

Potential usable heat

- Potential usable heat = Q/ + Qv + Qc
- = 0.27 x 1018J + 0.014 x 1018J + 2.24 x 1018 J
- = 2.52 x 1018J.

The Songwe prospect Power Potential

- The assumption was made that
- the resource have a life span of 25 yrs,
- a recoverable factor of 0.25 and
- an efficient conversion factor of 0.162.

Songwe prospect Power Potential

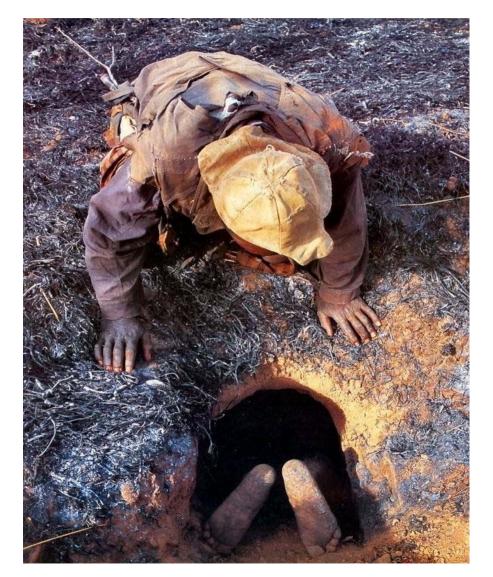
$$P(MWe) = \left[\frac{Potential \ usable \ heat \ * \ re \ cov \ ery \ factor \ * \ efficient \ conversion \ factor}{Lifetime \ (yr) \ * \ days \ (per \ year \) \ * \ hours \ (per \ day \) \ * \ sec \ onds \ (per \ (hour \))}\right] \dots (4.2)$$

$$P(MWe) = \left[\frac{2.52 \times 10^{-18} \times 0.25 \times 0.162}{25 \times 365 \times 24 \times 3600}\right] = 1.07 \times 10^{-8} (J / s)$$

= 107 x 106 (J/s) = **107 MWe**

Conclusion and Reccomandation

- From these preliminary studies of surface manifestations it shows that the South-Western Tanzania prospects have a prospective geothermal potential with surface maximum temperature range of 65°C-98°C
- Subsurface temperatures maximum ranging between 180°C-220°C (tkn)
- An estimated power potential of the Songwe prospect is about 107 MWe.
- It is recommended that further work for developing the resource should be taken into consideration.


What Next?

- So far, the highest potential prospect for geothermal power exploration is at the south-western Tanzania (the Rungwe volcanics and Songwe/Rukwa basin)
- The study to identify exploratory drilling sites need a detailed exploration plan, intergrating geological, geophysical (TEM, MT, Gravity), fluid chemistry, isotopes and gases
- Training in different kinds of geothermal displines to build geothermal human resources capacity
- Move to appraisal studies and field development for more promising sites
- Create awareness on geothermal
- Conduct nationa-wide geothermal resource assessment for production of a national geothermal resource map
- Facilitate international cooperation in geothermal development.

Acknowlegement

- The author acknowledges the assistance of:
- Auckland University Geothermal Institute
- UNU Iceland Geothermal Institute
- KenGen Kenya
- SIDA
- University of Dar es Salaam-COET
- MEM
- Profesorial Chair of Energy and Technology UDSM

